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Abstract
Quantized Skyrmions with baryon numbers B = 1, 2 and 4 are considered and
angularly localized wavefunctions for them are found. By combining a few
low angular momentum states, one can construct a quantum state whose spatial
density is close to that of the classical Skyrmion and has the same symmetries.
For the B = 1 case, we find the best localized wavefunction among linear
combinations of j = 1

2 and j = 3
2 angular momentum states. For B = 2, we

find that the j = 1 ground state has toroidal symmetry and a somewhat reduced
localization compared to the classical solution. For B = 4, where the classical
Skyrmion has cubic symmetry, we construct cubically symmetric quantum
states by combining the j = 0 ground state with the lowest rotationally excited
j = 4 state. We use the rational map approximation to compare the classical
and quantum baryon densities in the B = 2 and B = 4 cases.

PACS numbers: 12.39.Dc, 11.30.Fs

1. Introduction

The connection between the quantum and classical descriptions of a many-body system is
an important but rather tricky one. In nuclei, the existence of a rotational band suggests the
existence of a static intrinsic classical shape to the nucleus which is not spherically symmetric
[1]. It is not obvious how this classical shape arises from first principles, and it is hard to
predict the shape, but one can partially reconstruct it from the spectrum.

For a rigid body, the quantum states of various angular momenta are given by Wigner
functions D

j
sm(α, β, γ ), where α, β, γ are the Euler angles parametrizing the orientation, j is

the total angular momentum and s,m are its components with respect to the body-fixed and
space-fixed third axis. Symmetries of the body constrain the possible s-values or combinations
of s-values that can occur. A classically oriented state is a δ-function in the Euler angles. This
can be obtained by taking an infinite linear combination of Wigner functions. For a body
with symmetry, one should take a sum of δ-functions on a set of orientations related by
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symmetry. Even if there is no fundamental rigid body to start with, one can consider these
linear combinations. Thus, given a rotational band of states, one can construct a classically
oriented state by taking an infinite linear combination of true quantum states of definite angular
momentum. The properties of this oriented state (e.g. the particle density) would define the
nature of the intrinsic state.

Something like this has been done in certain condensed matter situations. One may
construct a classically oriented state when all that is rigorously available is quantum states
labelled by angular momentum. Cooper, Wilkin and Gunn [2] have studied a model of rotating
states of a Bose condensate trapped in a harmonic well. By numerically combining precise
states over a range of angular momenta, a condensate with localized vortices can be obtained,
and such vortices may be physically observed.

This localization depends on the system being large. Ideally, the moment of inertia should
be almost infinite because in that case, the angular momentum states of different j are almost
degenerate, and the angular localization may be achieved at almost no energy cost. Thus, for
large nuclei such as Hf170, there are many states in a rotational band, and it is pretty clear that
an intrinsic nuclear shape exists [1], whereas for smaller nuclei the picture is less reliable.

An effective field theory treatment of large many-body systems can give angularly (and
spatially) localized states much more easily. For example, in the Ginsburg–Landau description
of a Bose condensate, classical solutions of the field equation can naturally exhibit the spatial
order of an array of vortices. Because of the underlying symmetries, the classical solution is
not unique, but is parametrized by collective coordinates describing, say, the centre-of-mass
position and angular orientation. To reconstruct quantum states of definite angular momentum,
one may quantize the collective coordinates. A critical comparison of exact quantum states
and classical solutions of an effective field theory has been carried out for quantum Hall
ferromagnets by Abolfath et al [3].

In this paper, we shall consider the Skyrme model and its connection with nuclei and their
various angular momentum states. The Skyrme model is an effective field theory of pions,
with a topological quantum number B that can be identified with baryon number [4]. The
modern justification of the model is based on the idea that each nucleon is made of Nc quarks,
where SU(Nc) is the gauge group of QCD, so a nucleus of baryon number B is made of a large
number, NcB, of quarks. The Skyrme model has a semi-rigorous standing if Nc is large [5].

The classical Skyrme field equation, like that of the Ginsburg–Landau model, can
be solved numerically and much is known about its minimal energy solutions, known as
Skyrmions (especially for pion mass equal to zero) [6]. The classical shapes of the solutions,
and their symmetries, are known for values of B up to and beyond 20 (and work is underway
to take account of the finite pion mass, which has a qualitatively significant effect for B � 10).
These classical shapes could represent the intrinsic shapes of nuclei of modest size.

The shapes obtained have a subtle relation to shapes of nuclei as understood using models
based on point nucleons. For example, four-nucleon potential models are used to describe the
α-particle, and the classical minimum occurs for a tetrahedral configuration of the nucleons
[7]. The Skyrmion with B = 4 has cubic symmetry and forms naturally by the merger of
four B = 1 Skyrmions in an attractive tetrahedral arrangement. The physical α-particle is
spherically symmetric, because it has spin zero, and all classical orientations occur with equal
probability.

Our aim in this paper is to bridge the gap between the classical Skyrmion shapes and
the quantum states of nuclei. The traditional approach has been to quantize the collective
coordinates of Skyrmions, seek the lowest energy states consistent with the allowed values
of the angular momentum and compare with the ground state properties of nuclei. This
approach has some success in reproducing the known spins of nuclei, especially for even
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baryon number. A table of allowed angular momenta for the ground and first excited states
of rotationally quantized Skyrmions has been constructed recently [8]. However, in these
quantum states of definite angular momentum, the original Skyrmion shape information is
sometimes completely lost.

We cannot consider an infinite linear combination of angular momentum states, as we
expect that large angular momenta will lead to Skyrmion deformations, or if these are
suppressed, then to infinite energy. Instead, here we take a small combination of low-
lying angular momentum states, and partially reconstruct the shape of the classical Skyrmion
solution. We shall optimize the angular localization of the Skyrmion within the limited
combinations of states at our disposal. Such a finite combination of states has an energy
not necessarily very much higher than the ground state. Although these angularly localized
states may not be very significant for free nuclei, we believe that they could be useful for
understanding small nuclei that are substructures of larger ones.

This paper is restricted to the B = 1, 2, 4 Skyrmions. The classical B = 1 Skyrmion has
spherically symmetric energy and baryon densities. Therefore, we apparently do not have the
problem of orientation as the spherical symmetry is preserved after quantization. However,
the Skyrmion still has rotational collective coordinates, and we will show that a particular
combination of j = 1

2 and j = 3
2 states gives a highly localized orientational state. We also

show that the ground state of the deuteron (the j = 1 quantum state of the B = 2 Skyrmion),
without an admixture of higher angular momentum states, retains the toroidal symmetry of
the classical solution. Forest et al have argued that not only the pure deuteron state, but also
deuteron clusters within larger nuclei, show the toroidal structure [9]. Finally, we shall show
that a combination of j = 0 and j = 4 collective states of the B = 4 cubic Skyrmion gives a
state close to the classically oriented Skyrmion.

Section 2 contains a review of the Skyrme model (for more details see [10]), and in
section 3 we give an outline of the rational map approximation for Skyrmions, which we
use in the later sections to estimate the baryon density of the classical Skyrmions and their
quantum states.

2. The Skyrme model

The Skyrme model in geometrical units is defined by the Lagrangian

L =
∫ {

1

2
Tr(∂µU∂µU †) +

1

16
Tr([∂µUU †, ∂νUU †][∂µUU †, ∂νUU †])

}
d3x, (1)

where U(t, x) is an SU(2)-valued scalar field. Introducing the SU(2)-valued right current
Rµ = (∂µU)U †, the Lagrangian (1) takes the concise form

L =
∫ {

−1

2
Tr(RµRµ) +

1

16
Tr([Rµ,Rν][Rµ,Rν])

}
d3x. (2)

The Euler–Lagrange equation which follows from (2) is the Skyrme equation:

∂µ

(
Rµ + 1

4 [Rν, [Rν,Rµ]]
) = 0. (3)

Static solutions are the stationary points (either minima or saddle points) of the energy function

E =
∫ {

−1

2
Tr(RiRi) − 1

16
Tr([Ri, Rj ][Ri, Rj ])

}
d3x. (4)

The scalar field U, at fixed time, is a map from R
3 into S3, the group manifold of SU(2).

However, the boundary condition U → 1 implies a one-point compactification of space, so
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that topologically U: S3 → S3, where the domain S3 is identified with R
3 ∪ {∞}. The

topological degree of the map U has the explicit representation

B = − 1

24π2

∫
εijk Tr(RiRjRk) d3x. (5)

Skyrme identified this integer, B, with baryon number. It is conserved under continuous
deformations of the field, including time evolution. The minimal energy static solutions for
each B are known as Skyrmions.

3. Rational map ansatz

There is a precise 1–1 correspondence between rational maps and CP1 lumps in two dimensions
and between rational maps and BPS monopoles in three dimensions. If we identify the baryon
number B with the monopole number, the energy density distribution of Skyrmions, particularly
those with low baryon number, possesses the same symmetries as some specially symmetric
monopoles. This strongly suggests that we can use a rational map ansatz to describe Skyrmions
[11]. This map is compatible with the topology, symmetry and general structure of Skyrmions.
It separates the radial and angular dependance, which proves very convenient, and though not
satisfied by the exact Skyrmion solutions, it is a good approximation.

Rational maps are maps from S2 → S2, whereas Skyrmions are maps from R
3 → S3.

One identifies the domain S2 of the rational map with concentric spheres in R
3 and the target

of the rational map S2 with spheres of latitude on S3. A point in R
3 can be parametrized by

(r, z); r denotes the radial distance and the complex variable z is related via stereographic
projection to the usual polar coordinates θ and φ by z = tan

(
θ
2

)
eiφ . A rational map may be

written as R(z) = p(z)/q(z), where p(z) and q(z) are polynomials in z. The degree of the
rational map, N, is the greater of the algebraic degrees of the polynomials p and q. N is also
the topological degree of the map (its homotopy class) as a map from S2 → S2.

The value of the rational map R is associated with the unit vector

n̂R = 1

1 + |R|2 (R + R̄, i(R̄ − R), 1 − |R|2). (6)

The ansatz for the Skyrme field, depending on a rational map R(z) and a radial profile function
f (r), is

U(r, z) = exp(if (r)n̂R(z) · τ ), (7)

where τ = (τ1, τ2, τ3) denotes the triplet of Pauli matrices, and f (r) satisfies f (0) = π ,
f (∞) = 0.

An SU(2) Möbius transformation of z corresponds to a rotation in physical space; an
SU(2) Möbius transformation of R (i.e. on the target S2) corresponds to an isospin rotation.
Both are symmetries of the Skyrme model, and preserve N.

The baryon number for the ansatz (7) is given by

B = −
∫

f ′

2π2

(
sin f

r

)2 (
1 + |z|2
1 + |R|2

∣∣∣∣dR

dz

∣∣∣∣
)2

2i dz dz̄

(1 + |z|2)2
r2 dr. (8)

2i dz dz̄/(1 + |z|2)2 is equivalent to the usual 2-sphere area element sin θ dθ dφ. The angular
part of the integrand,(

1 + |z|2
1 + |R|2

∣∣∣∣dR

dz

∣∣∣∣
)2

2i dz dz̄

(1 + |z|2)2
, (9)
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is precisely the pull-back of the area form 2i dR dR̄/(1 + |R|2)2 on the target sphere of the
rational map R, so its integral is 4π times the degree N of the map. Therefore (8) simplifies to

B = −2N

π

∫ ∞

0
f ′ sin2 f dr = N. (10)

An attractive feature of the rational map ansatz is that it leads to a simple energy expression
which can be separately minimized with respect to the rational map R and the profile function
f to obtain close approximations to the numerical, exact Skyrmion solutions and having the
correct symmetries.

For B = 1, the rational map is R(z) = z, and this reproduces Skyrme’s hedgehog ansatz
[4], which is exactly satisfied by the B = 1 Skyrmion. For B = 2 and B = 4, the symmetries
of the computed Skyrmions are D∞h and Oh, respectively, and in each case there is a unique
rational map of the desired degree with the given symmetry, which also minimizes the angular
part of the energy. They are, respectively,

R(z) = z2, R(z) = z4 + 2
√

3iz2 + 1

z4 − 2
√

3iz2 + 1
. (11)

In all these cases, we have made a convenient choice of orientation in presenting the maps.
After quantizing the Skyrme field, we will be interested in the behaviour of

the wavefunction with respect to different orientations of the Skyrmion configurations.
Consequently, all the information we need will be encoded in the angular dependence of
the baryon density (9), which only depends on the rational map, and the profile function f

will not be of much interest for our purposes.

4. B = 1 case

The B = 1 Skyrmion is spherically symmetric and takes the hedgehog form

U0(x) = exp{if (r)x̂ · τ )}. (12)

If U0 is the soliton solution, then U = AU0A
−1, where A is an arbitrary constant SU(2) matrix,

is a static solution as well, and in order to get quantized Skyrmions which are eigenstates of
spin and isospin one needs to treat A as a collective coordinate. So substitute

U(x, t) = A(t)U0(x)A−1(t) (13)

in the Lagrangian (1), where A(t) is an arbitrary time-dependent SU(2) matrix. The
Lagrangian for A is [12]

L = −M + λ Tr(∂0A∂0A
−1), (14)

where M is the Skyrmion mass (static energy) and λ is an inertia constant which may be found
numerically.

The SU(2) matrix A can be written as A = a0 + ia · τ , with a2
0 + |a|2 = 1, and after the

usual quantization procedure one gets the Hamiltonian in terms of aξ (ξ = 0, 1, 2, 3):

H = M +
1

8λ

3∑
ξ=0

(
− ∂2

∂a2
ξ

)
. (15)

Because of the constraint a2
0 + |a|2 = 1, the wavefunctions �(A) can be expressed as

traceless, symmetric and homogeneous polynomials in aξ . � gives the amplitude for the
various orientations of the Skyrmions, but no matter what � is, the baryon density remains
spherically symmetric and equal to the classical baryon density.
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Using the isospin and spin operators

Ik = 1

2
i

(
a0

∂

∂ak

− ak

∂

∂a0
− εklmal

∂

∂am

)
, Jk = 1

2
i

(
ak

∂

∂a0
− a0

∂

∂ak

− εklmal

∂

∂am

)
,

(16)

Adkins, Nappi and Witten found the normalized wavefunctions for the neutron, proton and �-
resonance states within the Skyrme model [12]. It is a consequence of the hedgehog structure
that the eigenvalues of the total isospin and spin are equal. The wavefunctions we require here
have the opposite I3 and J3 eigenvalues, and are∣∣∣∣n, sz = 1

2

〉
= i

π
(a0 + ia3),

∣∣∣∣p, sz = −1

2

〉
= − i

π
(a0 − ia3),∣∣∣∣�−, sz = 3

2

〉
=

√
2

π
(a0 + ia3)

3,

∣∣∣∣�++, sz = −3

2

〉
=

√
2

π
(a0 − ia3)

3,

∣∣∣∣�0, sz = 1

2

〉
= −

√
2

π
(a0 + ia3)

(
1 − 3

(
a2

1 + a2
2

))
,

∣∣∣∣�+, sz = −1

2

〉
= −

√
2

π
(a0 − ia3)

(
1 − 3

(
a2

1 + a2
2

))
.

(17)

The best localized wavefunction will be a superposition of these ‘pure’ j = 1
2 and j = 3

2
states.

If we could take into account an infinite number of angular momentum states, the most
localized wavefunction would be the Dirac delta function, which may be expressed in the
following form:

δ(µ) =
∑

j

(2j + 1)χj (µ), j = 0,
1

2
, 1,

3

2
, . . . , (18)

where χj (µ) is the character of the representation Dj of dimension 2j + 1 and a0 = cos µ.
However, this wavefunction does not respect the Finkelstein–Rubinstein (FR) constraints [13],
which in the case of the B = 1 Skyrmion requires that the wavefunction is antisymmetric
under A → −A; thus ensuring that the quantized Skyrmion is a fermion. The sum in (18)
must therefore be restricted to half-integer values of j , giving the total 1

2 (δ(µ) − δ(µ − π)).
This is exactly localized at the two points A = 1 and A = −1, where a0 = ±1.

The entries of the representation matrices are Wigner functions D
j
sm, expressed in terms

of a0, . . . , a3. That is,

Dj =




D
j

jj . . . D
j

j−j

...
. . .

...

D
j

−jj . . . D
j

−j−j


 , (19)

and the character χj is Tr Dj , which only depends on a0. The diagonal elements contributing
to χ1/2 and χ3/2 are

D
1/2
1/2,1/2 = a0 + ia3, D

1/2
−1/2,−1/2 = a0 − ia3,

D
3/2
3/2,3/2 = (a0 + ia3)

3, D
3/2
1/2,1/2 = (a0 + ia3)

(
1 − 3

(
a2

1 + a2
2

))
,

D
3/2
−1/2,−1/2 = (a0 − ia3)

(
1 − 3

(
a2

1 + a2
2

))
, D

3/2
−3/2,−3/2 = (a0 − ia3)

3.

(20)
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If we truncate the sum (18) at j = 3
2 , we get the following candidate for a (normalized)

wavefunction well localized around a0 = ±1:

�(a0, a1, a2, a3) = 8

π

√
2

5

(
a3

0 − 3

8
a0

)
. (21)

In terms of nucleon and �-resonance states, this can be written as

1√
5

(
|�−〉 − |�0〉 − |�+〉 + |�++〉 − i√

2
(|n〉 − |p〉)

)
, (22)

with spins as in (17). A more general wavefunction of this type is

�(a0, a1, a2, a3) =
√

2

π

(
5

16
+ κ + κ2

)−1/2 (
a3

0 + κa0
)
. (23)

The maximum magnitude of � at a0 = ±1 occurs when κ = − 3
8 , confirming that this is the

best localized wavefunction.
Another measure of how well the wavefunction is localized around a0 = ±1 is given by

the integral

2

π2

(
5

16
+ κ + κ2

)−1 ∫ π

0
a2

0

∣∣a3
0 + κa0

∣∣2
d�. (24)

Here a0 = cos µ and d� = 4π sin2 µ dµ. After an easy calculation, we find that this integral is
maximal when κ = − 1

4 , which is close to the value of κ we got before. One more wavefunction
worth considering is

� = 4

π

√
2

5
a3

0, (25)

which is as well localized as that with κ = − 3
8 according to criterion (24) and rather simpler.

It is the following combination of nucleon and � states:

1
2
√

5
(|�−〉 − |�0〉 − |�+〉 + |�++〉 − 2

√
2i(|n〉 − |p〉)). (26)

These localized states are not physically important for isolated nucleons; however, they
could be useful for modelling nucleons in interaction. It appears, for example, that the deuteron
is not only formed from a proton and neutron but also contains some �-resonances [14, 15].
Therefore, considering a superposition of states with different angular momenta is definitely
physically meaningful. In [16], the deuteron was modelled by a quantum bound state of two
B = 1 Skyrmions in the attractive channel, where the relative orientation of the Skyrmions
was chosen to maximize the attraction at a short range. It would be interesting if the states of
the individual Skyrmions could be approximated by the combined j = 1

2 and j = 3
2 states we

have discussed here. The dependence of the force between two Skyrmions on their relative
orientation is the classical analogue of the tensor force between nucleons, and it appears to
automatically lead to an admixture of a �-resonance component to each nucleon.

5. B = 2 case

The B = 2 Skyrmion has D∞h symmetry and a toroidal shape [17–19]. It occurs at the
minimum of the potential for two B = 1 Skyrmions in the attractive channel. We take
the symmetry axis to be the third body-fixed axis, and the Skyrmion to be in its standard
orientation if this coincides with the third Cartesian axis in space. The quantized Skyrmion’s
wavefunction is a function of the rotational and isospin collective coordinates. (We ignore the
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translational collective coordinates and set the momentum to zero.) We have to impose FR
constraints, which tell us that the ground state has the quantum numbers (i, j) = (0, 1), where
i is the total isospin and j is the total spin. This ground state is a rigid body approximation to
the deuteron [20]. Since i = 0, there is no dependence on the isospin collective coordinates,
and the (normalized) wavefunction is

� =
√

3

8π2
D1

0m(α, β, γ ). (27)

Here α, β and γ are the rotational Euler angles.
Since we are particularly interested in the spatial orientation, we distinguish states differing

in m, the third component of the space-fixed spin. The wavefunction we desire is one with the
same symmetry properties as the classical solution, and this is

� =
√

3

8π2
D1

00(α, β, γ ) =
√

3

8π2
cos β, (28)

which is axially symmetric both on the left- and right-hand side (i.e. with respect to the body-
fixed symmetry axis and the x3-axis in space). � has its maximum magnitude at β = 0 and
β = π , corresponding to the B = 2 Skyrmion in its standard orientation, and turned upside
down, which is classically indistinguishable after an isospin rotation.

Now, we may calculate the nucleon density in the orientational quantum state (28) and find
how quantum effects change the density of the classical configuration. We find the expression
for the baryon density distribution ρ�(x) in the physical space (which is interpreted as nucleon
density) by averaging the classical baryon density over orientations weighted with |�|2. The
density in the quantum state is therefore

ρ�(x) =
∫

B(D(A)−1x)|�(A)|2 sin β dα dβ dγ. (29)

Here A stands for the SU(2) matrix parametrized by Euler angles α, β, γ and D(A) for the
SO(3) matrix associated with A via

D(A)ab = 1
2 Tr(τaAτbA

†). (30)

Recall that the rational map R(z) = z2 gives a good approximation to the B = 2 Skyrmion
solution. It leads, using (9), to the classical baryon density

B(r, z) = 1

π

(
1 + |z|2
1 + |z|4 |z|

)2

g(r), (31)

where g(r) is a radial function. g(r) is unaffected by the quantum averaging, so we ignore it
from now on. In polar coordinates, the angular dependence of B is given by

B = 1

π

(
1 + tan2

(
θ
2

))2
tan2

(
θ
2

)
(
1 + tan4

(
θ
2

))2 , (32)

where this is normalized to have angular integral equal to 2, the degree of the rational map.
To evaluate ρ�(x), we first expand B in terms of spherical harmonics Ylm(θ, φ):

B =
∑
l,m

clmYlm(θ, φ), (33)

where, because of toroidal symmetry, there are only terms with m = 0 and l even. The infinite
series (33) is dominated by the first two terms,

B = c00Y00(θ) + c20Y20(θ) + · · · , (34)
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(a) (b)

Figure 1. (a) Classical baryon density for B = 2, equation (34). (b) Quantum baryon density for
B = 2, equation (39).

and all higher terms contribute less than a 5% correction. Because the map R has degree 2,
c00 = 1/

√
π ; and we find numerically that c20 = −0.36. Then B(D(A)−1x) can be written as

B(x̃) = c00Y00(θ̃) + c20Y20(θ̃), (35)

where x̃ = D(A)−1x and similarly for θ̃ , φ̃. Using the transformation properties of spherical
harmonics under rotations,

Ylm(θ̃ , φ̃) =
∑

k

Dl
mk(A)∗Ylk(θ, φ) (no sum on l), (36)

the fact that |�|2 = (3/8π2)D1
00(A)D1

00(A)∗, the orthogonality properties of the Wigner
functions ∫

D
j

ab(A)D
j ′
cd(A)∗ sin β dα dβ dγ = 8π2

2j + 1
δjj ′

δacδbd, (37)

and finally (in terms of the Wigner 3j symbols)∫
D

j

ab(A)D
j ′
cd(A)D

j ′′
ef (A) sin β dα dβ dγ = 8π2

(
j j ′ j ′′

a c e

) (
j j ′ j ′′

b d f

)
, (38)

we find from (29) that the angular dependence of the nuclear density in the quantum state is

ρ� = c00Y00 + 2
5c20Y20. (39)

This is an exact expression—no higher terms are present. We see that it resembles the
classical distribution (34), but the first term dominates more. Thus, when quantum effects
are included, the classical toroidal density remains, but is smoothed out to become more
spherically symmetric. This is illustrated in figures 1(a) and (b).

6. B = 4 case

The B = 4 Skyrmion has cubic symmetry; the region of high baryon density resembles a
rounded cube with holes in the faces and at the centre [21]. We define the orthogonal body-
fixed axes to be those passing through the face centres, and the standard orientation of the cube
to be where these axes are aligned with the Cartesian axes in space. We shall again consider
the Skyrmion as a rigid body, which means that the configuration is not allowed to vibrate.
It was shown in [22] that the ground state, representing the α-particle, has quantum numbers
i = 0 and j = 0, with the (unnormalized) wavefunction �(0) = 1 being independent of the
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rotational and isospin collective coordinates. The first excited state has i = 0 and j = 4 and
is [23]

�(4)
m = D4

4m(α, β, γ ) +

√
14

5
D4

0m(α, β, γ ) + D4
−4m(α, β, γ ), (40)

this structure being required by the cubic symmetry with respect to body-fixed axes. In [23],
the third component of the space-fixed spin, m, was arbitrary.

To make the wavefunction cubically symmetric both on the left- and right-hand side, i.e.
also with respect to space-fixed axes, we need to take the linear combination of the above
wavefunctions:

�(4) = �
(4)
4 +

√
14

5
�

(4)
0 + �

(4)
−4 . (41)

The cubic symmetry in space is fairly obvious by analogy with (40) and can be verified as
follows. First note that symmetry under a 90◦ rotation about the x3-axis implies that possible
terms in (41) with m other than ±4, 0 vanish. Now introduce new variables

a = cos

(
β

2

)
e

1
2 iγ e

1
2 iα, b = − sin

(
β

2

)
e− 1

2 iγ e
1
2 iα, (42)

satisfying |a|2 + |b|2 = 1. In terms of a and b, the SU(2) orientation matrix parametrized by
Euler angles α, β, γ is

A =
(

a b

−b̄ ā

)
. (43)

The wavefunctions for different m have the following compact forms:

�
(4)
4 = a8 + 14a4b4 + b8

�
(4)
0 =

√
70

(
a4b̄4 + ā4b4 + 1

40 (3 − 30(|a2| − |b2|)2 + 35(|a2| − |b2|)4)
)

�
(4)
−4 = ā8 + 14ā4b̄4 + b̄8.

(44)

Therefore, the wavefunction (41) in terms of a and b is

�(4) = 2 Re(a8 + 14a4b4 + b8) + 14(a4b̄4 + ā4b4)

+ 7
20 (3 − 30(|a2| − |b2|)2 + 35(|a2| − |b2|)4). (45)

As expected, it is real. By acting on A with the generators of the cubic group(
1+i√

2
0

0 1−i√
2

)
,

( 1+i
2

1−i
2

− 1+i
2

1−i
2

)
, (46)

corresponding to a 90◦ rotation around a face of the cube, and a 120◦ rotation around a diagonal
of the cube, we find the resulting transformations of (a, b), and it is easy to check that �(4) is
cubically symmetric both on the left- and right-hand side.

The wavefunction �(4) has a positive maximum of 24
5 at the identity, where (a, b) = (1, 0),

and at all other elements of the (double cover of the) cubic group. This is as desired, as it
corresponds to the Skyrmion having a high probability to be in its standard orientation. But
�(4) also has a negative minimum of − 104

45 , which gives a further local maximum of |�(4)|2, at
an orientation obtained by a 60◦ rotation around a diagonal of the cube, which is far from the
standard orientation. We wish to suppress this and can do so by adding an arbitrary constant to
the wavefunction. This means taking a superposition of the excited state �(4) with the ground
state �(0):

� = �(4) + κ�(0). (47)
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Our goal will be to adjust the constant κ to get a nucleon density in the quantum state as close
as possible to the classical density.

As in the B = 2 case, we define the quantum nuclear density

ρ�(x) =
∫

B(D(A)−1x)|�(A)|2 sin β dα dβ dγ, (48)

where B(x) is the classical baryon density of the B = 4 Skyrmion in its standard orientation.
Using the rational map (11), we find that B has the angular dependence

B = 12

π
|z|2(1 + |z|2)2 (z4z̄4 − z4 − z̄4 + 1)

(z4z̄4 + z4 + 12z2z̄2 + z̄4 + 1)2
. (49)

Expressed in terms of polar angles,

B = 12

π
tan2

(
θ

2

)(
1 + tan2

(
θ

2

))2 (
tan8

(
θ
2

) − 2 tan4
(

θ
2

)
cos 4φ + 1

)
(
tan8

(
θ
2

)
+ 2 tan4

(
θ
2

)
cos 4φ + 12 tan4

(
θ
2

)
+ 1

)2 , (50)

which may be expanded in the following form:

B = d0Y00 + d4Z4(θ, φ) + d6Z6(θ, φ) + d8Z8(θ, φ) + · · · . (51)

Here Z4, Z6 and Z8 are the unique cubically symmetric combinations of spherical harmonics
with, respectively l = 4, 6 and 8:1

Z4 = Y44 +

√
14

5
Y40 + Y4−4, Z6 = Y64 −

√
2

7
Y60 + Y6−4,

Z8 = Y88 +

√
28

65
Y84 +

√
198

65
Y80 +

√
28

65
Y8−4 + Y8−8.

(52)

The leading coefficient is d0 = 2/
√

π because the rational map has degree 4, and by numerical
calculation we find that d4 = −0.28, d6 = −0.032 and d8 = 0.024. Then, by a similar
calculation as in the B = 2 case, normalizing the wavefunction, and using the orthogonality
properties of the Wigner functions and identity (38), we find the following numerical result
for the angular dependence of the quantum baryon density:

ρ� = d0Y00 +
4

2.56 + κ2
{−(0.038 + 0.075κ)Z4 − 0.006Z6 + 0.002Z8}. (53)

This is again a finite sum, all the further terms being zero.
The quantum averaging inevitably makes the density in the quantum state (53) closer to

spherically symmetric than the classical Skyrmion density (51). Let us now adjust κ so that
ρ� is as close as possible to the classical density, i.e. let us maximize the coefficient

4

2.56 + κ2
(0.038 + 0.075κ) (54)

of the l = 4 terms. The maximum is at κ ∼= 1.17, which leads to the following expression for
the quantum nuclear density:

ρ�
∼= 1.13Y00 − 0.13Z4 − 0.006Z6 + 0.002Z8

∼= d0Y00 + 0.46d4Z4 + 0.2d6Z6 + 0.1d8Z8. (55)

Thus in the B = 4 case, as in the B = 2 case, one can find a quantum state which
localizes the Skyrmion close to its standard orientation, and which preserves the symmetry
of the classical solution. However, the inclusion of quantum effects approximately halves the
leading non-constant harmonics, here with l = 4. This is illustrated in figures 2(a) and (b).
1 These can be derived by combining the generating, cubically symmetric Cartesian polynomials x2 + y2 + z2,
x4 + y4 + z4, x6 + y6 + z6 and finding the combinations which satisfy Laplace’s equation [24].
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(a)

(c)

(b)

Figure 2. (a) Classical baryon density for B = 4, equation (51). (b) Quantum baryon density
for B = 4, equation (51). (c) Quantum baryon density for B = 4 in pure j = 4 state,
equation (56).

If we considered the pure j = 4 state �(4), we would get

ρ�(4)
∼= d0Y00 + 0.2d4Z4 + 0.3d6Z6 + 0.15d8Z8, (56)

which is much closer to spherically symmetric (see figure 2(c)).
We can also find the energy of our state �; it is

E = 1

2.56 + κ2
(2.56Ej=4 + κ2Ej=0)

∼= 0.65Ej=4 + 0.35Ej=0, (57)

so it is not as highly excited as a pure j = 4 state.
The combination of j = 0 and j = 4 states, �, is a bit artificial as the quantum state

of a free B = 4 Skyrmion, but would make sense if we were dealing with interacting B =
4 Skyrmions (for example, to describe larger nuclei such as Be8, C12 in the Skyrme model
equivalent of the α-particle model). Here we expect the relative orientations of the B = 4
subclusters to be rather precisely fixed when they are close together, so as to minimize their
potential energy.

7. Conclusions

We have quantized the B = 1, B = 2 and B = 4 Skyrmions being guided by the symmetry
properties of the classical solutions, and the corresponding ‘best localized’ wavefunctions
were obtained. For the B = 4 case, we found a suitable combination of two low-lying angular
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momentum states which is energetically more efficient than a pure j = 4 state and whose
density distribution is closer to the classical one. These states may also be considered as an
attempt to answer the criticism of the Skyrme model based on the argument that real nuclei
do not look like classical Skyrmions. Here we have shown that there exist quantum states
of Skyrmions whose density distribution is very similar to the classical one. The states of
real nuclei, constructed from the same combination of angular momentum states, will have
the same symmetry and may well have a density distribution similar to those of the classical
Skyrmions. We have argued that these particular states are those most likely to be realized in
certain circumstances. We think that this strongly suggests that, although the found excited
states are difficult to observe experimentally, they do exist and in principle might be detected.
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